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Abstract
We consider Schrödinger operators in R

n, n = 3, 4, with electric potentials
V and magnetic potentials A being periodic functions (with a common period
lattice), and prove absolute continuity of the spectrum of the operators in
question when A ∈ H

q

loc(R
n; R

n), 2q > n − 1, and when the function |V | has
relative bound zero with respect to the free Schrödinger operator −� in the
sense of quadratic forms if n = 3 and the electric potential V has relative bound
zero with respect to the operator −� if n = 4.

PACS numbers: 02.30.Jr, 02.30.Tb, 71.20.−b
Mathematics Subject Classification: 35P05

In this paper we deal with the problem of absolute continuity of the spectrum of the periodic
Schrödinger operator

Ĥ (A, V ) =
n∑

j=1

(
−i

∂

∂xj

− Aj

)2

+ V (1)

acting on L2(Rn), n � 2, where the electric potential V : R
n → R and the magnetic potential

A : R
n → R

n are periodic functions with a common period lattice � ⊂ R
n. The Schrödinger

operator (1) (for n = 3 and A ≡ 0) plays an important role in the quantum solid state theory
(see, e.g., [1, 2]). The spectrum of the operator Ĥ (A, V ) has a band-gap structure and absolute
continuity of the spectrum implies the absence of eigenvalues (of infinite multiplicity) hence
the spectral bands do not collapse into a point (see [2, 3]). The first result on absolute continuity
of the spectrum of the Schrödinger operator (1) was obtained by Thomas in [4] for periodic
electric potentials V ∈ L2

loc(R
3) (and A ≡ 0). In the last decade many papers were devoted

to the problem of finding conditions on the electric potential V and the magnetic potential A

which ensure absolute continuity of the spectrum. A survey on this subject is given in [5, 6].
The main results of the present paper are formulated in theorems 0.1 and 0.2. In particular,
theorem 0.1 implies absolute continuity of the spectrum of operator (1) in the case n = 3 if the
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function |V | has relative bound zero with respect to the free Schrödinger operator Ĥ0
.= −�

in the sense of quadratic forms and A ∈ H
q

loc(R
3; R

3), q > 1.
Let K be the fundamental domain of the lattice �,�∗ the reciprocal lattice with the basis

vectors E∗
j satisfying the conditions (E∗

j , El) = δjl , where {El} is the basis in the lattice �

and δjl is the Kronecker delta. We denote by Hq(Rn; C
m),m ∈ N, the Sobolev class of order

q � 0. Let H̃ q(K; C
m) be the set of functions φ : K → C

m whose �-periodic extensions
belong to H

q

loc(R
n; C

m); Hq(Rn) = Hq(Rn; C), H̃ q(Rn) = H̃ q(Rn; C). In what follows, the
functions defined on the fundamental domain K will also be identified with their �-periodic
extensions to all of R

n.
A function W : R

n → C is said to be bounded with respect to the operator Ĥ0 = −�

with the domain D(Ĥ0) = H 2(Rn) if Wφ ∈ L2(Rn) for φ ∈ H 2(Rn) and there exist numbers
ε � 0 and Cε � 0 such that

‖Wφ‖2 � ε2‖Ĥ0φ‖2 + C2
ε ‖φ‖2 (2)

for all φ ∈ H 2(Rn). The infimum of numbers ε in estimate (2) is called the relative bound of the
functionW with respect to the operator Ĥ0 and will be denoted by bop(W). IfW|φ|2 ∈ L1(Rn)

for φ ∈ H 1(Rn) and there are numbers ε � 0 and Cε � 0 such that∣∣∣∣
∫

R
n

W|φ|2 dx

∣∣∣∣ � ε

n∑
j=1

∥∥∥∥ ∂φ

∂xj

∥∥∥∥2

+ Cε‖φ‖2 (3)

for all φ ∈ H 1(Rn), then the function W is said to be Ĥ0-form bounded (or bounded with
respect to the operator Ĥ0 in the sense of quadratic forms). The infimum of numbers ε in
estimate (3) is called the relative Ĥ0-form bound of the function W and will be denoted by
bform(W). If a function W is bounded with respect to the operator Ĥ0, then it is Ĥ0-form
bounded and bform(W) � bop(W) (moreover, in estimate (3), we can choose the same numbers
ε and Cε as in estimate (2)).

In the following, we shall consider potentials V and A such that bform(V ) < 1 and
bform(|A|2) = 0. Under these conditions the quadratic form

W(A,V ;φ, φ) =
n∑

j=1

∥∥∥∥
(

−i
∂

∂xj

− Aj

)
φ

∥∥∥∥2

+
∫

R
n

V |φ|2 dx, φ ∈ H 1(Rn),

with the domain Q(W(A, V ; ·, ·)) = H 1(Rn) ⊂ L2(Rn) is closed and bounded from below.
By the KLMN theorem (see, e.g., [7]), the form W(A,V ; ·, ·) generates the self-adjoint
operator (1) with some domain D(Ĥ (A, V )) ⊂ H 1(Rn).

The following two theorems are the main results of this paper.

Theorem 0.1. Let n = 3 and let V : R
3 → R and A : R

3 → R
3 be the periodic functions

with a common period lattice � ⊂ R
3. Suppose that the function |V | is Ĥ0-form bounded

and A ∈ H̃ q(K; R
3) for some q > 1. Then, there exists a number C(3)(A) ∈ (0, 1) such that

under the condition bform(|V |) � C(3)(A) the spectrum of the periodic Schrödinger operator
(1) is absolutely continuous.

Theorem 0.2. Let n = 4 and let V : R
4 → R and A : R

4 → R
4 be the periodic functions

with a common period lattice � ⊂ R
4. Suppose that the electric potential V is bounded with

respect to the operator Ĥ0 and A ∈ H̃ q(K; R
4) for some q > 3/2. Then, there exists a

number C(4)(A) ∈ (0, 1) such that under the condition bop(V ) � C(4)(A) the spectrum of the
periodic Schrödinger operator (1) is absolutely continuous.

We let

φN = v−1(K)

∫
K

φ(x) e−2π i(N,x) dx, N ∈ �∗,

2
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denote the Fourier coefficients of functions φ ∈ L1(K; C
m),m ∈ N, where v(·) is the Lebesgue

measure on R
n.

Remark 1. In theorems 0.1 and 0.2 we can choose more general classes of magnetic potentials
A which contain potentials A ∈ H̃ q(K; R

n), 2q > n − 1. Let n � 3. For vectors x ∈ R
n\{0}

we shall use the notation

Sn−2
x

.= {̃e ∈ Sn−1 : (̃e, x) = 0},
where Sn−1 = {y ∈ R

n : |y| = 1}. Let B(R) be the collection of Borel subsets O ⊆ R,M the
set of even signed Borel measures μ : B(R) → R and Mh the set of measures μ ∈ M such
that ∫

R

eipt dμ(t) = 1

for all p ∈ (−h, h), h > 0. In particular, the sets Mh contain the Dirac measure δ(·). Fix a
vector γ ∈ �\{0}. Denote by Aγ (n,�) the class of magnetic potentials A ∈ L2(K; R

n) that
obey the following two conditions (see [8]):

(1γ ) the map

R
n 	 x → {[0, 1] 	 ξ → A(x − ξγ )} ∈ L2([0, 1]; R

n)

is continuous;
(2γ ) there is a measure μ ∈ Mh (for some h > 0) such that

max
x∈R

n
max
ẽ∈Sn−2

γ

∣∣∣∣A0 −
∫

R

dμ(t)

∫ 1

0
A(x − ξγ − t̃ e) dξ

∣∣∣∣ <
π

|γ | , (4)

where A0 = v−1 (K)
∫
K

A(x) dx (and |.| denotes the Euclidean norm on R
n).

Theorems 0.1 and 0.2 are also valid if A ∈ Aγ (n,�) for some γ ∈ �\{0} (also
see [8]). Condition (1γ ) implies that bform(|A|2) = 0. Condition (2γ ) is fulfilled (under
an appropriate choice of the vector γ ∈ �\{0} and the measure μ ∈ Mh, h > 0) if
A ∈ H̃ q(K; R

n), 2q > n − 2 (see [9, 10]). If 2q > n − 1, then condition (1γ ) is fulfilled
as well. For the choice of Dirac measure μ = δ in condition (2γ ), inequality (4) is valid
whenever ∑

N∈�∗\{0}:(N,γ )=0

‖AN‖C
n <

π

|γ | . (5)

Moreover, inequality (5) holds under an appropriate choice of the vector γ ∈ �\{0} if∑
N∈�∗ ‖AN‖C

n < +∞ (see [9, 10]).

Denote by L
p
w(K), p � 1, the (weak-Lp(K)) space of measurable functions W : K → C

that satisfy the condition

‖W‖(w)
p

.= sup
t>0

t (v({x ∈ K : |W(x)| > t}))1/p < +∞.

For W ∈ L
p
w(K), we also write

‖W‖(w)
p,∞

.= lim
t→+∞t (v({x ∈ K : |W(x)| > t}))1/p.

In order to prove theorems 0.1 and 0.2, we apply the method suggested by Thomas in
[4]. This method is a key point in the proof of absolute continuity of the spectrum of periodic

3
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elliptic differential operators. A survey of relevant results is contained in [5, 6] in which the
generalized periodic Schrödinger operator

n∑
j,l=1

(
−i

∂

∂xj

− Aj

)
Gjl

(
−i

∂

∂xl

− Al

)
+ V, x ∈ R

n, (6)

is also considered (where the �-periodic matrix function (Gjl)
n
j,l=1 with real entries is

supposed to be symmetric and positive definite). The case of two-dimensional periodic
Schrödinger operators has been studied in a comprehensive way. In particular, for n = 2,
absolute continuity of the spectrum of the Schrödinger operator (1) was proved if the functions
V and |A|2 are Ĥ0-form bounded with relative Ĥ0-form bounds zero (see [11] and also
[12]). The generalized two-dimensional periodic Schrödinger operator (6) was considered in
[11–16] (also see references therein). For n � 3, absolute continuity of the spectrum of the
Schrödinger operator (1) was established by Sobolev (see [17]) for the periodic potentials
V ∈ Lp(K), p > n − 1 and A ∈ C2n+3(Rn; R

n). These conditions on the potentials V
and A were relaxed in subsequent papers [5, 6, 8, 10, 18, 19]. In [8], for n � 3, it was
supposed that V ∈ L

n/2
w (K), the magnetic potential A satisfies conditions (1γ ) and (2γ ) from

remark 1 (for some γ ∈ �\{0}), and ‖V ‖(w)
n/2,∞ � C, where C = C(n;A) > 0. The electric

potential V ∈ L
n/2
w (K) (for A ≡ 0) was also considered in [20]. The papers [21, 22] were

addressed to the problem in question for the periodic electric potentials V from the Kato class
(for n = 3) and Morrey class respectively (also for A ≡ 0). If the periodic Schrödinger
operator (1) has the period lattice � = Z

n, n � 3, and is invariant under the transformation
x1 → −x1, then its spectrum is absolutely continuous under the conditions V ∈ L

n/2
loc (Rn) and

A ∈ L
q

loc(R
n; R

n), q > n (see [23]). For n � 3, the generalized periodic Schrödinger operator
(6) was also considered in [23–26].

In this paper we use some results obtained in [8]. Theorem 1.5 from section 1 is a
particular case of theorem 3.1 from [8] which was proved as a consequence of statements
concerning the periodic magnetic Dirac operator (see [27, 28]). Theorem 1.5 allows us to
include the periodic magnetic potential A into the Schrödinger operator (1).

The proof of theorems 0.1 and 0.2 is presented in section 1. Theorems 1.3 and 1.4 stated
in section 1 are proved in section 2.

1. Proof of theorems 0.1 and 0.2

In the following, the scalar product and the norm on the space L2(K) will be written, omitting
the notation L2(K) (unlike other spaces). Since bform(|A|2) = 0 (see, e.g., [8]), one can define
a sesquilinear form

W(A; k + i�e;ψ, φ) =
n∑

j=1

((
−i

∂

∂xj

− Aj + kj − i�ej

)
ψ,

(
−i

∂

∂xj

− Aj + kj + i�ej

)
φ

)

with the domain Q(W(A; k + i�e; ·, ·)) = H̃ 1(K) ⊂ L2(K). In theorems 0.1 and 0.2, it is
supposed that bform(|V |) < 1, therefore there exist numbers ε ∈ (0, 1) and Cε > 0 such that
the inequality ∫

R
n

|V | · |φ|2 dx � ε

n∑
j=1

∥∥∥∥ ∂φ

∂xj

∥∥∥∥2

L2(Rn)

+ Cε‖φ‖2
L2(Rn) (7)

holds for all φ ∈ H 1(Rn).

4



J. Phys. A: Math. Theor. 43 (2010) 215201 L I Danilov

For n = 4, it is assumed that bop(V ) < 1. Hence, for some numbers ε ∈ (0, 1) and
Cε > 0, the following inequality is valid for all φ ∈ H 2(R4):∫

R
4
|V |2|φ|2 dx � ε2‖Ĥ0φ‖2

L2(R4)
+ C2

ε ‖φ‖2
L2(R4)

. (8)

Inequality (8) and the interpolation of operators (see [7]) imply inequality (7) for n = 4 (with
the same numbers ε and Cε).

From (7) it follows that the inequality∫
K

|V | · |φ|2 dx � ε

n∑
j=1

∥∥∥∥
(

kj − i
∂

∂xj

)
φ

∥∥∥∥2

+ Cε‖φ‖2 (9)

is fulfilled for all k ∈ R
n and all φ ∈ H̃ 1(K). Therefore,

W(A,V ; k + i�e;ψ, φ)
.= W(A; k + i�e;ψ, φ) +

∫
K

V ψφ dx, ψ, φ ∈ H̃ 1(K)

is a closed sectorial sesquilinear form generating an m-sectorial operator Ĥ (A; k + i�e) + V

(with the domain D(Ĥ (A; k + i�e) + V ) ⊂ H̃ 1(K) ⊂ L2(K) independent of the complex
vector k + i�e ∈ C

n). The operators Ĥ (A; k) + V (for � = 0) are self-adjoint and have a
compact resolvent. This implies that they have a discrete spectrum. For fixed vectors k ∈ R

n

and e ∈ Sn−1, the operators Ĥ (A; k + ζe) + V, ζ ∈ C, form a self-adjoint analytic family of
type (B) [29].

Let us denote

Ĥ0(k + i�e) =
n∑

j=1

(
−i

∂

∂xj

+ kj + i�ej

)2

,

D(Ĥ0(k + i�e)) = H̃ 2(K) ⊂ L2(K). For n = 4, from (8) it follows that V φ ∈ L2(K) for all
φ ∈ H̃ 2(K) and the estimate

‖V φ‖2 � ε2‖Ĥ0(k)φ‖2 + C2
ε ‖φ‖2 (10)

holds for all k ∈ R
4 and all φ ∈ H̃ 2(K).

The operator Ĥ (A, V ) is unitarily equivalent to the direct integral∫ ⊕
2πK∗

(Ĥ (A; k) + V )
dk

(2π)nv(K∗)
,

where K∗ is the fundamental domain of the lattice �∗. The unitary equivalence is established
via the Gel’fand transformation (see [2, 5]). Let λj (k), j ∈ N, be the eigenvalues of the
operators Ĥ (A; k) + V, k ∈ R

n. We assume that they are arranged in an increasing order
(counting multiplicities). To prove absolute continuity of the spectrum of the operator
Ĥ (A, V ), it suffices to find a vector e ∈ Sn−1 such that for all k ∈ R

n the functions
R 	 ξ → λj (k + ξe), j ∈ N, are not constant on every interval (ξ1, ξ2) ⊂ R, ξ1 < ξ2

(see [2, 4]). If there exist a vector k ∈ R
n, a number λ ∈ R and an index j ∈ N such that the

equality λj (k + ξe) = λ is fulfilled for all ξ ∈ (ξ1, ξ2), ξ1 < ξ2, then the analytic Fredholm
theorem implies that the number λ is an eigenvalue of the operators Ĥ (A; k + ζe) + V for all
ζ ∈ C. In theorems 1.1 and 1.2, for a given vector γ ∈ �\{0} it is proved that the operators
Ĥ (A; k + i�|γ |−1γ ) + V − λ are invertible for all numbers λ ∈ R, all vectors k ∈ R

n with
|(k, γ )| = π , and all sufficiently large numbers � > 0 (dependent on γ,A, V , and λ ∈ R).
Therefore, theorems 0.1 and 0.2 follow from theorems 1.1 and 1.2 respectively.

Fix a vector γ ∈ �\{0}; e = |γ |−1γ ∈ Sn−1. For vectors x ∈ R
n, we write

x‖
.= (x, e)e, x⊥

.= x − (x, e)e. For all N ∈ �∗, k ∈ R
n and � � 0, introduce the

notation

G±
N = G±

N(k + i�e) = (|k‖ + 2πN‖|2 + (� ± |k⊥ + 2πN⊥|)2)1/2.

5
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In what follows, we choose the vectors k ∈ R
n with |(k, γ )| = π . Hence, the following

estimates are true: G−
N � π |γ |−1,G+

N � �,G+
N � |k + 2πN | and G+

NG−
N � 2π |γ |−1�. The

equality

Ĥ0(k + i�e)φ =
∑

N∈�∗
(k + 2πN + i�e)2φN e2π i(N,x), φ ∈ H̃ 2(K),

holds, where |(k + 2πN + i�e)2| = G+
NG−

N . Denote by L̂θ = L̂θ (k + i�e), θ ∈ R, the
non-negative operators acting on L2(K):

L̂θφ =
∑

N∈�∗
(G+

NG−
N)θφN e2π i(N,x), φ ∈ D(L̂θ ) =

{
H̃ 2θ (K) if θ > 0,

L2(K) if θ � 0.

For the operator L̂ = L̂1, one has ‖L̂φ‖ = ‖Ĥ0(k + i�e)φ‖, φ ∈ D(L̂) = H̃ 2(K).

Theorem 1.1. Let n = 3. Suppose that the periodic magnetic potential A : R
3 → R

3

with a period lattice � ⊂ R
3 belongs to the space H̃ q(K; R

3) for some q > 1. Then there
are numbers C(3)(A) ∈ (0, 1), C1 = C1(A) > 0 and a vector γ ∈ �\{0}(e = |γ |−1γ ) such
that for any �-periodic electric potential V : R

3 → R for which the function |V | is Ĥ0-form
bounded and bform(|V |) � C(3)(A), and for any λ ∈ R there exists a number �0 > 0 such
that for all � � �0, all vectors k ∈ R

3 with |(k, γ )| = π , and all functions φ ∈ H̃ 1(K) the
inequality

sup
ψ∈H̃ 1(K):‖L̂1/2(k+i�e)ψ‖�1

|W(A,V − λ; k + i�e;ψ, φ)| � C1‖L̂1/2(k + i�e)φ‖ (11)

holds.

Theorem 1.2. Let n = 4. Suppose that the periodic magnetic potential A : R
4 → R

4 with
a period lattice � ⊂ R

4 belongs to the space H̃ q(K; R
4) for some q > 3/2. Then there

exist numbers C(4)(A) ∈ (0, 1), C1 = C1(A) > 0 and a vector γ ∈ �\{0}(e = |γ |−1γ )

such that for any �-periodic electric potential V : R
4 → R which is bounded with respect

to the operator Ĥ0 and satisfies the condition bop(V ) � C(4)(A), and for any λ ∈ R there
is a number �0 > 0 such that for all � � �0, all vectors k ∈ R

4 with |(k, γ )| = π , and all
functions φ ∈ H̃ 1(K) inequality (11) holds.

Theorems 1.1 and 1.2 are proved at the end of this section. They are the consequences of
theorems 1.3 and 1.4 respectively, and theorem 1.5.

Theorem 1.3. Let n = 3 and let W : R
3 → R be a periodic function with a period lattice

� ⊂ R
3. Suppose that the function |W| is Ĥ0-form bounded, γ ∈ �\{0} (and e = |γ |−1γ ).

Then for any δ > 0, there is a number �0 > 0 such that for all � � �0, all vectors k ∈ R
3 with

|(k, γ )| = π , and all functions φ ∈ H̃ 1(K) the inequality∫
K

|W| · |φ|2 dx � C ′(δ + bform(|W|))‖L̂1/2(k + i�e)φ‖2 (12)

is fulfilled, where C ′ > 0 is a universal constant.

Remark 2. For n = 3, theorem 1.2 from [8] is a consequence of theorem 1.3. For n � 3,
in theorem 1.2 from [8], it is proved that there exist numbers C̃ = C̃(n) > 0 such that for
any �-periodic function W : R

n → R which belongs to the space Ln
w(K), and any vector

γ ∈ �\{0} there is a number �0 > 0 such that for all � � �0, all vectors k ∈ R
n with

|(k, γ )| = π , and all functions φ ∈ H̃ 1(K) the following inequality is valid:

‖Wφ‖ � C̃‖W‖(w)
n ‖L̂1/2(k + i�e)φ‖.

6
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Theorem 1.4. Let n = 4 and let W : R
4 → R be a periodic function with a period lattice

� ⊂ R
4. Suppose that the function W is bounded with respect to the operator Ĥ0, γ ∈ �\{0}

(and e = |γ |−1γ ). Then for any δ > 0, there is a number �0 > 0 such that for all � � �0, all
vectors k ∈ R

4 with |(k, γ )| = π , and all functions φ ∈ H̃ 2(K) the inequality

‖Wφ‖ � C ′′(δ + bop(W))‖Ĥ0(k + i�e)φ‖ (13)

holds, where C ′′ > 0 is a universal constant.

Remark 3. Under the conditions of theorem 1.4 (for all � � �0 and all vectors k ∈ R
4 with

|(k, γ )| = π ) estimate (13) also implies the estimate∫
K

|W| · |φ|2 dx � C ′′(δ + bop(W))‖L̂1/2(k + i�e)φ‖2, φ ∈ H̃ 1(K). (14)

Indeed, from (13) it follows that

‖WL̂−1ψ‖ � C ′′(δ + bop(W))‖ψ‖, ψ ∈ L2(K).

The same estimate is true for the adjoint operator (WL̂−1)∗. Hence, using the interpolation of
operators (see, e.g., [7]), for all θ ∈ [0, 1], we derive

‖L̂−θ WL̂θ−1ψ‖ � C ′′(δ + bop(W))‖ψ‖, ψ ∈ H̃ 2θ (K). (15)

By continuity, the last inequality extends to all functions ψ ∈ L2(K). Choosing θ = 1/2 in
(15) and taking ψ = L̂1/2φ, we get estimate (14).

Theorem 1.5. Let n � 3 and let A : R
n → R

n be a periodic magnetic potential with a
period lattice � ⊂ R

n. Suppose that A ∈ H̃ q(K; R
n), 2q > n − 1. Then, there exist a vector

γ ∈ �\{0} (e = |γ |−1γ ) and numbers C2 = C2(n,�, |γ |;A) > 0 and �0 > 0 such that for
all � � �0, all vectors k ∈ R

n with |(k, γ )| = π , and all functions φ ∈ H̃ 1(K) the inequality

sup
ψ∈H̃ 1(K):‖L̂1/2(k+i�e)ψ‖�1

|W(A; k + i�e;ψ, φ)| � C2‖L̂1/2(k + i�e)φ‖ (16)

holds.

Theorem 1.5 is proved in [8] for more general classes of periodic magnetic potentials. In
theorem 1.3 from [8], for n � 3 and for �-periodic magnetic potentials A ∈ Aγ (n,�), γ ∈
�\{0}, it is proved that there exist numbers C2 = C2(n,�, |γ |;A) > 0 and �0 > 0 such
that inequality (16) is fulfilled for all � � �0, all vectors k ∈ R

n with |(k, γ )| = π , and all
functions φ ∈ H̃ 1(K). If A ∈ H̃ q(K; R

n), 2q > n − 1 (n � 3), then one can find a vector
γ ∈ �\{0} such that A ∈ Aγ (n,�) (see [8–10]). Therefore, theorem 1.5 is a consequence of
theorem 1.3 from [8].

Proof of theorems 1.1 and 1.2. Given the magnetic potential A ∈ H̃ q(K; R
n), 2q > n − 1,

in accordance with theorem 1.5 we choose a vector γ ∈ �\{0} and a number C2, such
that estimate (16) holds for all sufficiently large numbers � � �0, all vectors k ∈ R

n with
|(k, γ )| = π , and all functions φ ∈ H̃ 1(K). If n = 3, then bform(|V − λ|) = bform(|V |) for all
λ ∈ R. Hence theorem 1.3 (estimate (12)) implies that for any δ > 0 and for all sufficiently
large numbers � � �0, the following inequality is valid:∫

K

|V − λ| · |φ|2 dx � C ′(δ + bform(|V |))‖L̂1/2φ‖2, φ ∈ H̃ 1(K).

The polarization identity gives∣∣∣∣
∫

K

(V − λ)ψφ dx

∣∣∣∣ � C ′(δ + bform(|V |))‖L̂1/2ψ‖ · ‖L̂1/2φ‖, ψ, φ ∈ H̃ 1(K). (17)

7
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Let C1
.= 1

2C2, C
(3)(A)

.= C2(4C ′)−1. Then, taking any number δ ∈ (0, C(3)(A)], from (16)
and (17) we derive estimate (11). If n = 4, then bop(V −λ) = bop(V ) for all λ ∈ R. Therefore,
from theorem 1.5, remark 3 and the polarization identity, for any δ > 0 and for all sufficiently
large numbers � � �0, we get∣∣∣∣
∫

K

(V − λ)ψφ dx

∣∣∣∣ � C ′′(δ + bop(V ))‖L̂1/2ψ‖ · ‖L̂1/2φ‖, ψ, φ ∈ H̃ 1(K).

Let C1
.= 1

2C2, C
(4)(A)

.= C2(4C ′′)−1, and let us choose any number δ ∈ (0, C(4)(A)]. Now,
theorem 1.2 immediately follows from the last estimate and estimate (16). �

2. Proof of theorems 1.3 and 1.4

First we introduce notation and prove some statements which will be used in the following.
Let � be a non-negative function from the Schwartz space S(Rn) such that

∫
R

n �(x) dx =
1. Denote

�β(x)
.= β−n�

(
x

β

)
, x ∈ R

n, β > 0;

Cβ,�(�)
.= max

x∈R
n

∑
N∈�

�β(x − N).

Given a function φ ∈ L2(K) and a set M ⊆ �∗, we define the function

φM(x)
.=

∑
N∈M

φN e2π i(N,x), x ∈ R
n;

φ �∗ = φ, φ∅ ≡ 0 (the notation φ M will be used when either a set M or its complement
�∗\M is finite).

Fix a vector γ ∈ �\{0}; e = |γ |−1γ .
If n = 3, we set ε = δ + bform(|W|). Then, for some number Cε > 0, estimate (7) holds.

Consequently estimate (9) holds for all k ∈ R
3 as well.

If n = 4, we set ε = δ + bop(W). Then estimate (8) is also fulfilled for some number
Cε > 0. Consequently, for all k ∈ R

4, estimate (10) is valid as well.
Let us pick a number a > 0 such that Cε � εa2 (for both n = 3 and n = 4) and

a � 4π diam K∗, where diam K∗ is a diameter of the fundamental domain K∗.
We assume that �0 > 2a (and � � �0). A few additional lower bounds on the number �0

will be given below. For the vectors k ∈ R
n, we suppose that |(k, γ )| = π .

Let

K = K(k; �) =
{
N ∈ �∗ : G−

N � �

2

}
, Ka = Ka(k; �) = {N ∈ �∗ : G−

N � a} ⊆ K.

If N ∈ K, then |k⊥ + 2πN⊥| � �/2. Let N (Ka) be the number of vectors N in the set Ka .
Since a � 4π diam K∗, we have a + 2π diam K∗ � 3a/2 < 3�/4 and consequently

N (Ka) � c0v
−1(K∗)a2�n−2 = c0v(K)a2�n−2,

where c0 = c0(n) > 0.
For vectors y ∈ R

n with y⊥ �= 0, we write

ẽ(y)
.= y⊥

|y⊥| ∈ Sn−2
γ .

Denote

Sn−2
γ (�)

.= {y ∈ R
n : (y, e) = 0 and |y⊥| = �},

and choose vectors y(j) ∈ Sn−2
γ (�), j = 1, . . . , J , such that the following two conditions are

fulfilled:

8
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(1) |y(j1) − y(j2)| � a for different indices j 1 and j2;
(2) for any vector y ∈ Sn−2

γ (�), there exists a vector y(j) such that |y − y(j)| < a.

For a � ã � 2� and y ∈ Sn−2
γ (�), denote by N (̃a; y) the number of vectors y(j) satisfying

the inequality |y − y(j)| � ã.
We shall use (without proof) the following simple lemma.

Lemma 2.1. There are constants c1 = c1(n) > 0 and c2 = c2(n) > c1(n) such that for all
ã ∈ [a, 2�] and all vectors y ∈ Sn−2

γ (�) the estimates

c1

(
ã

a

)n−2

� N (̃a; y) � c2

(
ã

a

)n−2

hold.

In particular, from lemma 2.1 it follows that

J � c2

(
2�

a

)n−2

. (18)

Define the sets

A(j) = {N ∈ K\Ka : |�ẽ(k + 2πN) − y(j)| < G−
N }, j = 1, . . . , J.

For any N ∈ K\Ka , one has G−
N > a. Therefore, by the choice of the vectors y(j) ∈ Sn−2

γ (�),
we deduce that

K\Ka =
J⋃

j=1

A(j).

If N ∈ A(j), then

|(k + 2πN) − y(j)|2 = |(k⊥ + 2πN⊥) − y(j)|2 + |k‖ + 2πN‖|2
� 2|�ẽ(k + 2πN) − y(j)|2 + 2|(k⊥ + 2πN⊥) − �ẽ(k + 2πN)|2 + |k‖ + 2πN‖|2
< 2|�ẽ(k + 2πN) − y(j)|2 + 2(G−

N)2 < 4(G−
N)2. (19)

For vectors N ∈ K\Ka we shall use the short notation NN
.= N (G−

N ; �ẽ(k + 2πN)) for
the number of indices j ∈ {1, . . . , J } such that N ∈ A(j). The next estimate follows from
lemma 2.1:

NN � c1

(
G−

N

a

)n−2

. (20)

Define the functions

φ(j) =
∑

N∈A(j)

N−1
N φN e2π i(N,x), j = 1, . . . , J.

We have

φK\Ka =
J∑

j=1

φ(j).

Now, let n = 3. By (19), for all N ∈ A(j) we derive

ε|(k + 2πN) − y(j)|2 + Cε < 4ε(G−
N)2 + εa2 < 5ε(G−

N)2.

9
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Hence, from (9) (for all j = 1, . . . , J ), it follows that∫
K

|W| · |φ(j)|2 dx � v(K)
∑

N∈A(j)

(ε|(k + 2πN) − y(j)|2 + Cε)
∣∣φ(j)

N

∣∣2

� 5εv(K)
∑

N∈A(j)

N−2
N (G−

N)2|φN |2.

The last inequality and estimates (18) and (20) imply that∫
K

|W| · |φK\Ka |2 dx � J

J∑
j=1

∫
K

|W| · |φ(j)|2 dx � 5εJv(K)

J∑
j=1

∑
N∈A(j)

N−2
N (G−

N)2|φN |2

= 5εJv(K)
∑

N∈K\Ka

N−1
N (G−

N)2|φN |2 � 10ε
c2

c1
�v(K)

∑
N∈K\Ka

G−
N |φN |2

� 10ε
c2

c1
v(K)

∑
N∈K\Ka

G+
NG−

N |φN |2 = 10ε
c2

c1
‖L̂1/2(k + i�e)φ K\Ka‖2. (21)

The function |W| is Ĥ0-form bounded. In particular, this means that W ∈ L1
loc(R

3). For
the functions

(W ∗ �β)(x) =
∫

R
3
W(y)�β(x − y) dy, x ∈ R

3, β > 0,

one has

‖W ∗ �β‖L∞(R3) � Cβ, �(�)‖W‖L1(K), (22)

and

‖W − W ∗ �β‖L1(K) → 0

as β → +0. Let us pick a number β > 0 such that

|γ |
π

c0a
2‖W − W ∗ �β‖L1(K) � ε. (23)

We assume that the following constraint on the number �0 is fulfilled:

|γ |
π

Cβ,�(�)‖W‖L1(K) � ε�0. (24)

Since

‖φKa‖2 � |γ |
2π

�−1‖L̂1/2(k + i�e)φKa‖2,

‖φKa‖2
L∞(R3)

� N (Ka)
∑
N∈Ka

|φN |2

� |γ |
2π

c0a
2v(K)

∑
N∈Ka

G+
NG−

N |φN |2 = |γ |
2π

c0a
2‖L̂1/2(k + i�e)φKa‖2,

using (22), (23) and (24), (for � � �0) we obtain∫
K

|W| · |φKa |2 dx � ‖W − W ∗ �β‖L1(K)‖φKa‖2
L∞(R3)

+ ‖W ∗ �β‖L∞(R3)‖φKa‖2

� ε‖L̂1/2(k + i�e)φ Ka‖2. (25)

If N ∈ �∗\K, then G−
N > 1

3 |k + 2πN | and consequently

G+
NG−

N > 1
3 |k + 2πN |2. (26)

10
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Suppose that the next constraint on the number �0 is also true:

|γ |
π

Cε � 2ε�0. (27)

Then (for � � �0)∫
K

|W| · |φ�∗\K|2 dx � v(K)
∑

N∈�∗\K
(ε|k + 2πN |2 + Cε)|φN |2

� 4εv(K)
∑

N∈�∗\K
G+

NG−
N |φN |2 = 4ε‖L̂1/2(k + i�e)φ �∗\K‖2. (28)

Since ε = δ + bform (|W|) and

φ = φKa + φK\Ka + φ�∗\K, φ ∈ H̃ 1(K),

inequality (12) follows from (21), (25) and (28). This completes the proof of theorem 1.3.
Now, let n = 4. Using the inequality Cε � εa2, from (19) for all N ∈ A(j), j = 1, . . . , J ,

we obtain

ε2|(k + 2πN) − y(j)|4 + C2
ε < 16ε2(G−

N)4 + ε2a4 < 17ε2(G−
N)4.

Hence, by (10),∫
K

|W|2|φ(j)|2 dx � v(K)
∑

N∈A(j)

(ε2|(k + 2πN) − y(j)|4 + C2
ε )

∣∣φ(j)

N

∣∣2

� 17ε2v(K)
∑

N∈A(j)

N−2
N (G−

N)4|φN |2.

By analogy with (21) (also see (18) and (20)), we get∫
K

|W|2|φK\Ka |2 dx � J

J∑
j=1

∫
K

|W|2|φ(j)|2 dx

� 17ε2Jv(K)

J∑
j=1

∑
N∈A(j)

N−2
N (G−

N)4|φN |2 = 17ε2Jv(K)
∑

N∈K\Ka

N−1
N (G−

N)4|φN |2

� 68ε2 c2

c1
�2v(K)

∑
N∈K\Ka

(G−
N)2|φN |2 � 68ε2 c2

c1
v(K)

∑
N∈K\Ka

(G+
NG−

N)2|φN |2

= 68ε2 c2

c1
‖L̂(k + i�e)φ K\Ka‖2. (29)

Since the functionW is bounded with respect to the operator Ĥ0, we haveW ∈ L2
loc(R

4) ⊂
L1

loc(R
4). As above (see (22)), for the functions W ∗ �β, β > 0, we derive the inequality

‖W ∗ �β‖L∞(R4) � Cβ, �(�)‖W‖L1(K). (30)

Moreover,

‖W − W ∗ �β‖L2(K) → 0

as β → +0. Let us pick a number β > 0 such that

|γ |2
π2

c0a
2‖W − W ∗ �β‖2

L2(K) � ε2. (31)

11
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The number �0 is supposed to satisfy inequality (24). The following estimates are valid:

‖φKa‖ � |γ |
2π

�−1‖L̂(k + i�e)φKa‖,
‖φKa‖2

L∞(R4)
� N (Ka)

∑
N∈Ka

|φN |2

�
( |γ |

2π

)2

c0a
2v(K)

∑
N∈Ka

(
G+

NG−
N

)2|φN |2 =
( |γ |

2π

)2

c0a
2‖L̂(k + i�e)φKa‖2.

Therefore, using (24), (30) and (31), for � � �0, we obtain∫
K

|W|2|φKa |2 dx � 2‖W − W ∗ �β‖2
L2(K)‖φKa‖2

L∞(R4)
+ 2‖W ∗ �β‖2

L∞(R4)
‖φKa‖2

� ε2‖L̂(k + i�e)φ Ka‖2. (32)

Finally suppose that the number �0 also satisfies inequality (27). Then estimates (10) and
(26) yield∫

K

|W|2|φ�∗\K|2 dx � v(K)
∑

N∈�∗\K

(
ε2|k + 2πN |4 + C2

ε

)|φN |2

� 10ε2v(K)
∑

N∈�∗\K

(
G+

NG−
N

)2|φN |2 = 10ε2‖L̂(k + i�e)φ �∗\K‖2. (33)

Since ε = δ + bop (|W|) and

φ = φKa + φK\Ka + φ�∗\K, φ ∈ H̃ 2(K),

theorem 1.4 immediately follows from (29), (32) and (33).
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