

Home Search Collections Journals About Contact us My IOPscience

On absolute continuity of the spectrum of three- and four-dimensional periodic Schrödinger operators

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2010 J. Phys. A: Math. Theor. 43 215201 (http://iopscience.iop.org/1751-8121/43/21/215201)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.157 The article was downloaded on 03/06/2010 at 08:50

Please note that terms and conditions apply.

J. Phys. A: Math. Theor. 43 (2010) 215201 (13pp)

doi:10.1088/1751-8113/43/21/215201

On absolute continuity of the spectrum of three- and four-dimensional periodic Schrödinger operators

L I Danilov

Department of Theoretical Physics, Physical-Technical Institute, 132, Kirov Street, Izhevsk, 426000, Russia

E-mail: danilov@otf.pti.udm.ru

Received 15 January 2010, in final form 16 March 2010 Published 4 May 2010 Online at stacks.iop.org/JPhysA/43/215201

Abstract

We consider Schrödinger operators in \mathbb{R}^n , n = 3, 4, with electric potentials *V* and magnetic potentials *A* being periodic functions (with a common period lattice), and prove absolute continuity of the spectrum of the operators in question when $A \in H^q_{loc}(\mathbb{R}^n; \mathbb{R}^n)$, 2q > n - 1, and when the function |V| has relative bound zero with respect to the free Schrödinger operator $-\Delta$ in the sense of quadratic forms if n = 3 and the electric potential *V* has relative bound zero with respect to the operator $-\Delta$ if n = 4.

PACS numbers: 02.30.Jr, 02.30.Tb, 71.20.-b Mathematics Subject Classification: 35P05

In this paper we deal with the problem of absolute continuity of the spectrum of the periodic Schrödinger operator

$$\widehat{H}(A,V) = \sum_{j=1}^{n} \left(-i\frac{\partial}{\partial x_j} - A_j \right)^2 + V$$
(1)

acting on $L^2(\mathbb{R}^n)$, $n \ge 2$, where the electric potential $V : \mathbb{R}^n \to \mathbb{R}$ and the magnetic potential $A : \mathbb{R}^n \to \mathbb{R}^n$ are periodic functions with a common period lattice $\Lambda \subset \mathbb{R}^n$. The Schrödinger operator (1) (for n = 3 and $A \equiv 0$) plays an important role in the quantum solid state theory (see, e.g., [1, 2]). The spectrum of the operator $\widehat{H}(A, V)$ has a band-gap structure and absolute continuity of the spectrum implies the absence of eigenvalues (of infinite multiplicity) hence the spectral bands do not collapse into a point (see [2, 3]). The first result on absolute continuity of the spectrum of the Schrödinger operator (1) was obtained by Thomas in [4] for periodic electric potentials $V \in L^2_{loc}(\mathbb{R}^3)$ (and $A \equiv 0$). In the last decade many papers were devoted to the problem of finding conditions on the electric potential V and the magnetic potential A which ensure absolute continuity of the spectrum. A survey on this subject is given in [5, 6]. The main results of the present paper are formulated in theorems 0.1 and 0.2. In particular, theorem 0.1 implies absolute continuity of the spectrum of operator (1) in the case n = 3 if the

function |V| has relative bound zero with respect to the free Schrödinger operator $\widehat{H}_0 \doteq -\Delta$ in the sense of quadratic forms and $A \in H^q_{loc}(\mathbb{R}^3; \mathbb{R}^3), q > 1$.

Let *K* be the fundamental domain of the lattice Λ , Λ^* the reciprocal lattice with the basis vectors E_j^* satisfying the conditions $(E_j^*, E_l) = \delta_{jl}$, where $\{E_l\}$ is the basis in the lattice Λ and δ_{jl} is the Kronecker delta. We denote by $H^q(\mathbb{R}^n; \mathbb{C}^m)$, $m \in \mathbb{N}$, the Sobolev class of order $q \ge 0$. Let $\widetilde{H}^q(K; \mathbb{C}^m)$ be the set of functions $\phi : K \to \mathbb{C}^m$ whose Λ -periodic extensions belong to $H^q_{loc}(\mathbb{R}^n; \mathbb{C}^m)$; $H^q(\mathbb{R}^n) = H^q(\mathbb{R}^n; \mathbb{C})$, $\widetilde{H}^q(\mathbb{R}^n) = \widetilde{H}^q(\mathbb{R}^n; \mathbb{C})$. In what follows, the functions defined on the fundamental domain *K* will also be identified with their Λ -periodic extensions to all of \mathbb{R}^n .

A function $\mathcal{W} : \mathbb{R}^n \to \mathbb{C}$ is said to be *bounded with respect to the operator* $\widehat{H}_0 = -\Delta$ with the domain $D(\widehat{H}_0) = H^2(\mathbb{R}^n)$ if $\mathcal{W}\phi \in L^2(\mathbb{R}^n)$ for $\phi \in H^2(\mathbb{R}^n)$ and there exist numbers $\varepsilon \ge 0$ and $C_{\varepsilon} \ge 0$ such that

$$\|\mathcal{W}\phi\|^2 \leqslant \varepsilon^2 \|\widehat{H}_0\phi\|^2 + C_{\varepsilon}^2 \|\phi\|^2 \tag{2}$$

for all $\phi \in H^2(\mathbb{R}^n)$. The infimum of numbers ε in estimate (2) is called the *relative bound* of the function \mathcal{W} with respect to the operator \widehat{H}_0 and will be denoted by $b_{op}(\mathcal{W})$. If $\mathcal{W}|\phi|^2 \in L^1(\mathbb{R}^n)$ for $\phi \in H^1(\mathbb{R}^n)$ and there are numbers $\varepsilon \ge 0$ and $C_{\varepsilon} \ge 0$ such that

$$\left|\int_{\mathbb{R}^{n}} \mathcal{W}|\phi|^{2} \,\mathrm{d}x\right| \leqslant \varepsilon \sum_{j=1}^{n} \left\|\frac{\partial \phi}{\partial x_{j}}\right\|^{2} + C_{\varepsilon} \|\phi\|^{2} \tag{3}$$

for all $\phi \in H^1(\mathbb{R}^n)$, then the function \mathcal{W} is said to be \widehat{H}_0 -form bounded (or bounded with respect to the operator \widehat{H}_0 in the sense of quadratic forms). The infimum of numbers ε in estimate (3) is called the *relative* \widehat{H}_0 -form bound of the function \mathcal{W} and will be denoted by $b_{\text{form}}(\mathcal{W})$. If a function \mathcal{W} is bounded with respect to the operator \widehat{H}_0 , then it is \widehat{H}_0 -form bounded and $b_{\text{form}}(\mathcal{W}) \leq b_{\text{op}}(\mathcal{W})$ (moreover, in estimate (3), we can choose the same numbers ε and C_{ε} as in estimate (2)).

In the following, we shall consider potentials V and A such that $b_{\text{form}}(V) < 1$ and $b_{\text{form}}(|A|^2) = 0$. Under these conditions the quadratic form

$$W(A, V; \phi, \phi) = \sum_{j=1}^{n} \left\| \left(-i \frac{\partial}{\partial x_j} - A_j \right) \phi \right\|^2 + \int_{\mathbb{R}^n} V |\phi|^2 \, \mathrm{d}x, \qquad \phi \in H^1(\mathbb{R}^n),$$

with the domain $Q(W(A, V; \cdot, \cdot)) = H^1(\mathbb{R}^n) \subset L^2(\mathbb{R}^n)$ is closed and bounded from below. By the KLMN theorem (see, e.g., [7]), the form $W(A, V; \cdot, \cdot)$ generates the self-adjoint operator (1) with some domain $D(\widehat{H}(A, V)) \subset H^1(\mathbb{R}^n)$.

The following two theorems are the main results of this paper.

Theorem 0.1. Let n = 3 and let $V : \mathbb{R}^3 \to \mathbb{R}$ and $A : \mathbb{R}^3 \to \mathbb{R}^3$ be the periodic functions with a common period lattice $\Lambda \subset \mathbb{R}^3$. Suppose that the function |V| is \widehat{H}_0 -form bounded and $A \in \widetilde{H}^q(K; \mathbb{R}^3)$ for some q > 1. Then, there exists a number $C^{(3)}(A) \in (0, 1)$ such that under the condition $b_{\text{form}}(|V|) \leq C^{(3)}(A)$ the spectrum of the periodic Schrödinger operator (1) is absolutely continuous.

Theorem 0.2. Let n = 4 and let $V : \mathbb{R}^4 \to \mathbb{R}$ and $A : \mathbb{R}^4 \to \mathbb{R}^4$ be the periodic functions with a common period lattice $\Lambda \subset \mathbb{R}^4$. Suppose that the electric potential V is bounded with respect to the operator \widehat{H}_0 and $A \in \widetilde{H}^q(K; \mathbb{R}^4)$ for some q > 3/2. Then, there exists a number $C^{(4)}(A) \in (0, 1)$ such that under the condition $b_{op}(V) \leq C^{(4)}(A)$ the spectrum of the periodic Schrödinger operator (1) is absolutely continuous.

We let

$$\phi_N = v^{-1}(K) \int_K \phi(x) \operatorname{e}^{-2\pi \operatorname{i}(N,x)} \mathrm{d}x, \qquad N \in \Lambda^*,$$

denote the Fourier coefficients of functions $\phi \in L^1(K; \mathbb{C}^m)$, $m \in \mathbb{N}$, where $v(\cdot)$ is the Lebesgue measure on \mathbb{R}^n .

Remark 1. In theorems 0.1 and 0.2 we can choose more general classes of magnetic potentials A which contain potentials $A \in \widetilde{H}^q(K; \mathbb{R}^n)$, 2q > n - 1. Let $n \ge 3$. For vectors $x \in \mathbb{R}^n \setminus \{0\}$ we shall use the notation

$$S_x^{n-2} \doteq \{ \widetilde{e} \in S^{n-1} : (\widetilde{e}, x) = 0 \},\$$

where $S^{n-1} = \{y \in \mathbb{R}^n : |y| = 1\}$. Let $\mathcal{B}(\mathbb{R})$ be the collection of Borel subsets $\mathcal{O} \subseteq \mathbb{R}$, \mathfrak{M} the set of even signed Borel measures $\mu : \mathcal{B}(\mathbb{R}) \to \mathbb{R}$ and \mathfrak{M}_h the set of measures $\mu \in \mathfrak{M}$ such that

$$\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i}pt} \,\mathrm{d}\mu(t) = 1$$

for all $p \in (-h, h), h > 0$. In particular, the sets \mathfrak{M}_h contain the Dirac measure $\delta(\cdot)$. Fix a vector $\gamma \in \Lambda \setminus \{0\}$. Denote by $\mathcal{A}_{\gamma}(n, \Lambda)$ the class of magnetic potentials $A \in L^2(K; \mathbb{R}^n)$ that obey the following two conditions (see [8]):

 $(\mathbf{1}_{\gamma})$ the map

$$\mathbb{R}^n \ni x \to \{[0,1] \ni \xi \to A(x-\xi\gamma)\} \in L^2([0,1];\mathbb{R}^n)$$

is continuous;

 $(\mathbf{2}_{\gamma})$ there is a measure $\mu \in \mathfrak{M}_h$ (for some h > 0) such that

$$\max_{x\in\mathbb{R}^n}\max_{\widetilde{e}\in S_{\gamma}^{n-2}}\left|A_0 - \int_{\mathbb{R}}\mathrm{d}\mu(t)\int_0^1 A(x-\xi\gamma-t\widetilde{e})\,\mathrm{d}\xi\right| < \frac{\pi}{|\gamma|},\tag{4}$$

where $A_0 = v^{-1}(K) \int_K A(x) dx$ (and |.| denotes the Euclidean norm on \mathbb{R}^n).

Theorems 0.1 and 0.2 are also valid if $A \in \mathcal{A}_{\gamma}(n, \Lambda)$ for some $\gamma \in \Lambda \setminus \{0\}$ (also see [8]). Condition $(\mathbf{1}_{\gamma})$ implies that $b_{\text{form}}(|A|^2) = 0$. Condition $(\mathbf{2}_{\gamma})$ is fulfilled (under an appropriate choice of the vector $\gamma \in \Lambda \setminus \{0\}$ and the measure $\mu \in \mathfrak{M}_h, h > 0$) if $A \in \tilde{H}^q(K; \mathbb{R}^n), 2q > n - 2$ (see [9, 10]). If 2q > n - 1, then condition $(\mathbf{1}_{\gamma})$ is fulfilled as well. For the choice of Dirac measure $\mu = \delta$ in condition $(\mathbf{2}_{\gamma})$, inequality (4) is valid whenever

$$\sum_{N \in \Lambda^* \setminus \{0\}: (N, \gamma) = 0} \|A_N\|_{\mathbb{C}^n} < \frac{\pi}{|\gamma|}.$$
(5)

Moreover, inequality (5) holds under an appropriate choice of the vector $\gamma \in \Lambda \setminus \{0\}$ if $\sum_{N \in \Lambda^*} ||A_N||_{\mathbb{C}^n} < +\infty$ (see [9, 10]).

Denote by $L_w^p(K)$, $p \ge 1$, the (*weak-L^p(K*)) space of measurable functions $\mathcal{W} : K \to \mathbb{C}$ that satisfy the condition

$$\|\mathcal{W}\|_{p}^{(w)} \doteq \sup_{t>0} t \left(v(\{x \in K : |\mathcal{W}(x)| > t\}) \right)^{1/p} < +\infty.$$

For $\mathcal{W} \in L^p_w(K)$, we also write

$$\|\mathcal{W}\|_{p,\infty}^{(w)} \doteq \overline{\lim_{t \to +\infty}} t(v(\{x \in K : |\mathcal{W}(x)| > t\}))^{1/p}$$

In order to prove theorems 0.1 and 0.2, we apply the method suggested by Thomas in [4]. This method is a key point in the proof of absolute continuity of the spectrum of periodic

$$\sum_{j,l=1}^{n} \left(-i\frac{\partial}{\partial x_j} - A_j \right) G_{jl} \left(-i\frac{\partial}{\partial x_l} - A_l \right) + V, \qquad x \in \mathbb{R}^n, \tag{6}$$

is also considered (where the Λ -periodic matrix function $(G_{jl})_{i,l=1}^n$ with real entries is supposed to be symmetric and positive definite). The case of two-dimensional periodic Schrödinger operators has been studied in a comprehensive way. In particular, for n = 2, absolute continuity of the spectrum of the Schrödinger operator (1) was proved if the functions V and $|A|^2$ are \hat{H}_0 -form bounded with relative \hat{H}_0 -form bounds zero (see [11] and also [12]). The generalized two-dimensional periodic Schrödinger operator (6) was considered in [11–16] (also see references therein). For $n \ge 3$, absolute continuity of the spectrum of the Schrödinger operator (1) was established by Sobolev (see [17]) for the periodic potentials $V \in L^p(K), p > n-1$ and $A \in C^{2n+3}(\mathbb{R}^n; \mathbb{R}^n)$. These conditions on the potentials V and A were relaxed in subsequent papers [5, 6, 8, 10, 18, 19]. In [8], for $n \ge 3$, it was supposed that $V \in L_w^{n/2}(K)$, the magnetic potential A satisfies conditions $(\mathbf{1}_{\gamma})$ and $(\mathbf{2}_{\gamma})$ from remark 1 (for some $\gamma \in \Lambda \setminus \{0\}$), and $\|V\|_{n/2,\infty}^{(w)} \leq C$, where C = C(n; A) > 0. The electric potential $V \in L_w^{n/2}(K)$ (for $A \equiv 0$) was also considered in [20]. The papers [21, 22] were addressed to the problem in question for the periodic electric potentials V from the Kato class (for n = 3) and Morrey class respectively (also for $A \equiv 0$). If the periodic Schrödinger operator (1) has the period lattice $\Lambda = \mathbb{Z}^n$, $n \ge 3$, and is invariant under the transformation $x_1 \to -x_1$, then its spectrum is absolutely continuous under the conditions $V \in L^{n/2}_{loc}(\mathbb{R}^n)$ and $A \in L^q_{loc}(\mathbb{R}^n; \mathbb{R}^n), q > n$ (see [23]). For $n \ge 3$, the generalized periodic Schrödinger operator (6) was also considered in [23-26].

In this paper we use some results obtained in [8]. Theorem 1.5 from section 1 is a particular case of theorem 3.1 from [8] which was proved as a consequence of statements concerning the periodic magnetic Dirac operator (see [27, 28]). Theorem 1.5 allows us to include the periodic magnetic potential A into the Schrödinger operator (1).

The proof of theorems 0.1 and 0.2 is presented in section 1. Theorems 1.3 and 1.4 stated in section 1 are proved in section 2.

1. Proof of theorems 0.1 and 0.2

In the following, the scalar product and the norm on the space $L^2(K)$ will be written, omitting the notation $L^2(K)$ (unlike other spaces). Since $b_{\text{form}}(|A|^2) = 0$ (see, e.g., [8]), one can define a sesquilinear form

$$W(A; k + i\varkappa e; \psi, \phi) = \sum_{j=1}^{n} \left(\left(-i\frac{\partial}{\partial x_j} - A_j + k_j - i\varkappa e_j \right) \psi, \left(-i\frac{\partial}{\partial x_j} - A_j + k_j + i\varkappa e_j \right) \phi \right)$$

with the domain $Q(W(A; k + i\varkappa e; \cdot, \cdot)) = \widetilde{H}^1(K) \subset L^2(K)$. In theorems 0.1 and 0.2, it is supposed that $b_{\text{form}}(|V|) < 1$, therefore there exist numbers $\varepsilon \in (0, 1)$ and $C_{\varepsilon} > 0$ such that the inequality

$$\int_{\mathbb{R}^{n}} |V| \cdot |\phi|^{2} \, \mathrm{d}x \leqslant \varepsilon \sum_{j=1}^{n} \left\| \frac{\partial \phi}{\partial x_{j}} \right\|_{L^{2}(\mathbb{R}^{n})}^{2} + C_{\varepsilon} \|\phi\|_{L^{2}(\mathbb{R}^{n})}^{2}$$
(7)

holds for all $\phi \in H^1(\mathbb{R}^n)$.

For n = 4, it is assumed that $b_{op}(V) < 1$. Hence, for some numbers $\varepsilon \in (0, 1)$ and $C_{\varepsilon} > 0$, the following inequality is valid for all $\phi \in H^2(\mathbb{R}^4)$:

$$\int_{\mathbb{R}^4} |V|^2 |\phi|^2 \, \mathrm{d}x \leqslant \varepsilon^2 \|\widehat{H}_0 \phi\|_{L^2(\mathbb{R}^4)}^2 + C_{\varepsilon}^2 \|\phi\|_{L^2(\mathbb{R}^4)}^2.$$
(8)

Inequality (8) and the interpolation of operators (see [7]) imply inequality (7) for n = 4 (with the same numbers ε and C_{ε}).

From (7) it follows that the inequality

$$\int_{K} |V| \cdot |\phi|^{2} dx \leqslant \varepsilon \sum_{j=1}^{n} \left\| \left(k_{j} - i \frac{\partial}{\partial x_{j}} \right) \phi \right\|^{2} + C_{\varepsilon} \|\phi\|^{2}$$

$$\tag{9}$$

is fulfilled for all $k \in \mathbb{R}^n$ and all $\phi \in \widetilde{H}^1(K)$. Therefore,

$$W(A, V; k + i\varkappa e; \psi, \phi) \doteq W(A; k + i\varkappa e; \psi, \phi) + \int_{K} V \overline{\psi} \phi \, dx, \qquad \psi, \phi \in \widetilde{H}^{1}(K)$$

is a closed sectorial sesquilinear form generating an *m*-sectorial operator $\widehat{H}(A; k + i\varkappa e) + V$ (with the domain $D(\widehat{H}(A; k + i\varkappa e) + V) \subset \widetilde{H}^1(K) \subset L^2(K)$ independent of the complex vector $k + i\varkappa e \in \mathbb{C}^n$). The operators $\widehat{H}(A; k) + V$ (for $\varkappa = 0$) are self-adjoint and have a compact resolvent. This implies that they have a discrete spectrum. For fixed vectors $k \in \mathbb{R}^n$ and $e \in S^{n-1}$, the operators $\widehat{H}(A; k + \zeta e) + V, \zeta \in \mathbb{C}$, form a self-adjoint analytic family of type (B) [29].

Let us denote

$$\widehat{H}_0(k+\mathrm{i}\varkappa e) = \sum_{j=1}^n \left(-\mathrm{i}\frac{\partial}{\partial x_j} + k_j + \mathrm{i}\varkappa e_j\right)^2,$$

 $D(\widehat{H}_0(k + i\varkappa e)) = \widetilde{H}^2(K) \subset L^2(K)$. For n = 4, from (8) it follows that $V\phi \in L^2(K)$ for all $\phi \in \widetilde{H}^2(K)$ and the estimate

$$\|V\phi\|^2 \leqslant \varepsilon^2 \|\widehat{H}_0(k)\phi\|^2 + C_{\varepsilon}^2 \|\phi\|^2 \tag{10}$$

holds for all $k \in \mathbb{R}^4$ and all $\phi \in \widetilde{H}^2(K)$.

The operator $\widehat{H}(A, V)$ is unitarily equivalent to the direct integral

$$\int_{2\pi K^*}^{\bigoplus} (\widehat{H}(A;k) + V) \frac{\mathrm{d}k}{(2\pi)^n v(K^*)}$$

where K^* is the fundamental domain of the lattice Λ^* . The unitary equivalence is established via the Gel'fand transformation (see [2, 5]). Let $\lambda_j(k)$, $j \in \mathbb{N}$, be the eigenvalues of the operators $\widehat{H}(A; k) + V$, $k \in \mathbb{R}^n$. We assume that they are arranged in an increasing order (counting multiplicities). To prove absolute continuity of the spectrum of the operator $\widehat{H}(A, V)$, it suffices to find a vector $e \in S^{n-1}$ such that for all $k \in \mathbb{R}^n$ the functions $\mathbb{R} \ni \xi \to \lambda_j(k + \xi e)$, $j \in \mathbb{N}$, are not constant on every interval $(\xi_1, \xi_2) \subset \mathbb{R}, \xi_1 < \xi_2$ (see [2, 4]). If there exist a vector $k \in \mathbb{R}^n$, a number $\lambda \in \mathbb{R}$ and an index $j \in \mathbb{N}$ such that the equality $\lambda_j(k + \xi e) = \lambda$ is fulfilled for all $\xi \in (\xi_1, \xi_2), \xi_1 < \xi_2$, then the analytic Fredholm theorem implies that the number λ is an eigenvalue of the operators $\widehat{H}(A; k + \zeta e) + V$ for all $\zeta \in \mathbb{C}$. In theorems 1.1 and 1.2, for a given vector $\gamma \in \Lambda \setminus \{0\}$ it is proved that the operators $\widehat{H}(A; k + i\varkappa |\gamma|^{-1}\gamma) + V - \lambda$ are invertible for all numbers $\lambda \in \mathbb{R}$, all vectors $k \in \mathbb{R}^n$ with $|(k, \gamma)| = \pi$, and all sufficiently large numbers $\varkappa > 0$ (dependent on γ , A, V, and $\lambda \in \mathbb{R}$). Therefore, theorems 0.1 and 0.2 follow from theorems 1.1 and 1.2 respectively.

Fix a vector $\gamma \in \Lambda \setminus \{0\}$; $e = |\gamma|^{-1}\gamma \in S^{n-1}$. For vectors $x \in \mathbb{R}^n$, we write $x_{\parallel} \doteq (x, e)e, x_{\perp} \doteq x - (x, e)e$. For all $N \in \Lambda^*, k \in \mathbb{R}^n$ and $\varkappa \ge 0$, introduce the notation

$$G_N^{\pm} = G_N^{\pm}(k + i\varkappa e) = (|k_{\parallel} + 2\pi N_{\parallel}|^2 + (\varkappa \pm |k_{\perp} + 2\pi N_{\perp}|)^2)^{1/2}$$

In what follows, we choose the vectors $k \in \mathbb{R}^n$ with $|(k, \gamma)| = \pi$. Hence, the following estimates are true: $G_N^- \ge \pi |\gamma|^{-1}$, $G_N^+ \ge \varkappa$, $G_N^+ \ge |k + 2\pi N|$ and $G_N^+ G_N^- \ge 2\pi |\gamma|^{-1} \varkappa$. The equality

$$\widehat{H}_0(k+\mathrm{i}\varkappa e)\phi = \sum_{N\in\Lambda^*} (k+2\pi N+\mathrm{i}\varkappa e)^2 \phi_N \,\mathrm{e}^{2\pi\mathrm{i}(N,x)}, \qquad \phi\in\widetilde{H}^2(K),$$

holds, where $|(k + 2\pi N + i\varkappa e)^2| = G_N^+ G_N^-$. Denote by $\widehat{L}^{\theta} = \widehat{L}^{\theta}(k + i\varkappa e), \theta \in \mathbb{R}$, the non-negative operators acting on $L^2(K)$:

$$\widehat{L}^{\theta}\phi = \sum_{N \in \Lambda^*} (G_N^+ G_N^-)^{\theta} \phi_N \, \mathrm{e}^{2\pi \mathrm{i}(N,x)}, \qquad \phi \in D(\widehat{L}^{\theta}) = \begin{cases} H^{2\theta}(K) & \text{if } \theta > 0, \\ L^2(K) & \text{if } \theta \leqslant 0. \end{cases}$$

For the operator $\widehat{L} = \widehat{L}^1$, one has $\|\widehat{L}\phi\| = \|\widehat{H}_0(k + i\varkappa e)\phi\|, \phi \in D(\widehat{L}) = \widetilde{H}^2(K)$.

Theorem 1.1. Let n = 3. Suppose that the periodic magnetic potential $A : \mathbb{R}^3 \to \mathbb{R}^3$ with a period lattice $\Lambda \subset \mathbb{R}^3$ belongs to the space $\widetilde{H}^q(K; \mathbb{R}^3)$ for some q > 1. Then there are numbers $C^{(3)}(A) \in (0, 1), C_1 = C_1(A) > 0$ and a vector $\gamma \in \Lambda \setminus \{0\} (e = |\gamma|^{-1}\gamma)$ such that for any Λ -periodic electric potential $V : \mathbb{R}^3 \to \mathbb{R}$ for which the function |V| is \widehat{H}_0 -form bounded and $b_{\text{form}}(|V|) \leq C^{(3)}(A)$, and for any $\lambda \in \mathbb{R}$ there exists a number $\varkappa_0 > 0$ such that for all $\varkappa \geq \varkappa_0$, all vectors $k \in \mathbb{R}^3$ with $|(k, \gamma)| = \pi$, and all functions $\phi \in \widetilde{H}^1(K)$ the inequality

 $\sup_{\substack{\psi \in \widetilde{H}^{1}(K): \|\widehat{L}^{1/2}(k+\mathbf{i}\varkappa e)\psi\| \leqslant 1}} |W(A, V-\lambda; k+\mathbf{i}\varkappa e; \psi, \phi)| \ge C_1 \|\widehat{L}^{1/2}(k+\mathbf{i}\varkappa e)\phi\|$ (11)

holds.

Theorem 1.2. Let n = 4. Suppose that the periodic magnetic potential $A : \mathbb{R}^4 \to \mathbb{R}^4$ with a period lattice $\Lambda \subset \mathbb{R}^4$ belongs to the space $\widetilde{H}^q(K; \mathbb{R}^4)$ for some q > 3/2. Then there exist numbers $C^{(4)}(A) \in (0, 1), C_1 = C_1(A) > 0$ and a vector $\gamma \in \Lambda \setminus \{0\} (e = |\gamma|^{-1}\gamma)$ such that for any Λ -periodic electric potential $V : \mathbb{R}^4 \to \mathbb{R}$ which is bounded with respect to the operator \widehat{H}_0 and satisfies the condition $b_{op}(V) \leq C^{(4)}(A)$, and for any $\lambda \in \mathbb{R}$ there is a number $\varkappa_0 > 0$ such that for all $\varkappa \geq \varkappa_0$, all vectors $k \in \mathbb{R}^4$ with $|(k, \gamma)| = \pi$, and all functions $\phi \in \widetilde{H}^1(K)$ inequality (11) holds.

Theorems 1.1 and 1.2 are proved at the end of this section. They are the consequences of theorems 1.3 and 1.4 respectively, and theorem 1.5.

Theorem 1.3. Let n = 3 and let $\mathcal{W} : \mathbb{R}^3 \to \mathbb{R}$ be a periodic function with a period lattice $\Lambda \subset \mathbb{R}^3$. Suppose that the function $|\mathcal{W}|$ is \widehat{H}_0 -form bounded, $\gamma \in \Lambda \setminus \{0\}$ (and $e = |\gamma|^{-1}\gamma$). Then for any $\delta > 0$, there is a number $\varkappa_0 > 0$ such that for all $\varkappa \ge \varkappa_0$, all vectors $k \in \mathbb{R}^3$ with $|(k, \gamma)| = \pi$, and all functions $\phi \in \widetilde{H}^1(K)$ the inequality

$$\int_{K} |\mathcal{W}| \cdot |\phi|^2 \,\mathrm{d}x \leqslant C'(\delta + b_{\mathrm{form}}(|\mathcal{W}|)) \|\widehat{L}^{1/2}(k + \mathrm{i}\varkappa e)\phi\|^2 \tag{12}$$

is fulfilled, where C' > 0 is a universal constant.

Remark 2. For n = 3, theorem 1.2 from [8] is a consequence of theorem 1.3. For $n \ge 3$, in theorem 1.2 from [8], it is proved that there exist numbers $\widetilde{C} = \widetilde{C}(n) > 0$ such that for any Λ -periodic function $\mathcal{W} : \mathbb{R}^n \to \mathbb{R}$ which belongs to the space $L^n_w(K)$, and any vector $\gamma \in \Lambda \setminus \{0\}$ there is a number $\varkappa_0 > 0$ such that for all $\varkappa \ge \varkappa_0$, all vectors $k \in \mathbb{R}^n$ with $|(k, \gamma)| = \pi$, and all functions $\phi \in \widetilde{H}^1(K)$ the following inequality is valid:

$$\|\mathcal{W}\phi\| \leqslant \widetilde{C} \|\mathcal{W}\|_n^{(w)} \|\widehat{L}^{1/2}(k+\mathrm{i}\varkappa e)\phi\|.$$

Theorem 1.4. Let n = 4 and let $\mathcal{W} : \mathbb{R}^4 \to \mathbb{R}$ be a periodic function with a period lattice $\Lambda \subset \mathbb{R}^4$. Suppose that the function \mathcal{W} is bounded with respect to the operator $\widehat{H}_0, \gamma \in \Lambda \setminus \{0\}$ (and $e = |\gamma|^{-1}\gamma$). Then for any $\delta > 0$, there is a number $\varkappa_0 > 0$ such that for all $\varkappa \ge \varkappa_0$, all vectors $k \in \mathbb{R}^4$ with $|(k, \gamma)| = \pi$, and all functions $\phi \in \widetilde{H}^2(K)$ the inequality

$$\|\mathcal{W}\phi\| \leqslant C''(\delta + b_{\rm op}(\mathcal{W}))\|\widehat{H}_0(k + i\varkappa e)\phi\|$$
⁽¹³⁾

holds, where C'' > 0 is a universal constant.

Remark 3. Under the conditions of theorem 1.4 (for all $\varkappa \ge \varkappa_0$ and all vectors $k \in \mathbb{R}^4$ with $|(k, \gamma)| = \pi$) estimate (13) also implies the estimate

$$\int_{K} |\mathcal{W}| \cdot |\phi|^2 \,\mathrm{d}x \leqslant C''(\delta + b_{\mathrm{op}}(\mathcal{W})) \|\widehat{L}^{1/2}(k + \mathrm{i}\varkappa e)\phi\|^2, \qquad \phi \in \widetilde{H}^1(K).$$
(14)

Indeed, from (13) it follows that

$$\mathcal{W}\widehat{L}^{-1}\psi \| \leqslant C''(\delta + b_{\rm op}(\mathcal{W})) \|\psi\|, \qquad \psi \in L^2(K).$$

The same estimate is true for the adjoint operator $(W\widehat{L}^{-1})^*$. Hence, using the interpolation of operators (see, e.g., [7]), for all $\theta \in [0, 1]$, we derive

$$\|\widehat{L}^{-\theta} \mathcal{W}\widehat{L}^{\theta-1}\psi\| \leqslant C''(\delta + b_{\rm op}(\mathcal{W}))\|\psi\|, \qquad \psi \in \widetilde{H}^{2\theta}(K).$$
(15)

By continuity, the last inequality extends to all functions $\psi \in L^2(K)$. Choosing $\theta = 1/2$ in (15) and taking $\psi = \hat{L}^{1/2}\phi$, we get estimate (14).

Theorem 1.5. Let $n \ge 3$ and let $A : \mathbb{R}^n \to \mathbb{R}^n$ be a periodic magnetic potential with a period lattice $\Lambda \subset \mathbb{R}^n$. Suppose that $A \in \widetilde{H}^q(K; \mathbb{R}^n)$, 2q > n - 1. Then, there exist a vector $\gamma \in \Lambda \setminus \{0\}$ $(e = |\gamma|^{-1}\gamma)$ and numbers $C_2 = C_2(n, \Lambda, |\gamma|; A) > 0$ and $\varkappa_0 > 0$ such that for all $\varkappa \ge \varkappa_0$, all vectors $k \in \mathbb{R}^n$ with $|(k, \gamma)| = \pi$, and all functions $\phi \in \widetilde{H}^1(K)$ the inequality

$$\sup_{\psi \in \widetilde{H}^{1}(K): \|\widehat{L}^{1/2}(k+i\varkappa e)\psi\| \leqslant 1} |W(A; k+i\varkappa e; \psi, \phi)| \ge C_2 \|\widehat{L}^{1/2}(k+i\varkappa e)\phi\|$$
(16)

holds.

Theorem 1.5 is proved in [8] for more general classes of periodic magnetic potentials. In theorem 1.3 from [8], for $n \ge 3$ and for Λ -periodic magnetic potentials $A \in \mathcal{A}_{\gamma}(n, \Lambda), \gamma \in \Lambda \setminus \{0\}$, it is proved that there exist numbers $C_2 = C_2(n, \Lambda, |\gamma|; A) > 0$ and $\varkappa_0 > 0$ such that inequality (16) is fulfilled for all $\varkappa \ge \varkappa_0$, all vectors $k \in \mathbb{R}^n$ with $|(k, \gamma)| = \pi$, and all functions $\phi \in \tilde{H}^1(K)$. If $A \in \tilde{H}^q(K; \mathbb{R}^n), 2q > n - 1$ $(n \ge 3)$, then one can find a vector $\gamma \in \Lambda \setminus \{0\}$ such that $A \in \mathcal{A}_{\gamma}(n, \Lambda)$ (see [8–10]). Therefore, theorem 1.5 is a consequence of theorem 1.3 from [8].

Proof of theorems 1.1 and 1.2. Given the magnetic potential $A \in \widetilde{H}^q(K; \mathbb{R}^n)$, 2q > n - 1, in accordance with theorem 1.5 we choose a vector $\gamma \in \Lambda \setminus \{0\}$ and a number C_2 , such that estimate (16) holds for all sufficiently large numbers $\varkappa \ge \varkappa_0$, all vectors $k \in \mathbb{R}^n$ with $|(k, \gamma)| = \pi$, and all functions $\phi \in \widetilde{H}^1(K)$. If n = 3, then $b_{\text{form}}(|V - \lambda|) = b_{\text{form}}(|V|)$ for all $\lambda \in \mathbb{R}$. Hence theorem 1.3 (estimate (12)) implies that for any $\delta > 0$ and for all sufficiently large numbers $\varkappa \ge \varkappa_0$, the following inequality is valid:

$$\int_{K} |V - \lambda| \cdot |\phi|^2 \, \mathrm{d}x \leqslant C'(\delta + b_{\mathrm{form}}(|V|)) \|\widehat{L}^{1/2}\phi\|^2, \qquad \phi \in \widetilde{H}^1(K)$$

The polarization identity gives

$$\left| \int_{K} (V - \lambda) \overline{\psi} \phi \, \mathrm{d}x \right| \leq C' (\delta + b_{\text{form}}(|V|)) \|\widehat{L}^{1/2} \psi\| \cdot \|\widehat{L}^{1/2} \phi\|, \qquad \psi, \phi \in \widetilde{H}^{1}(K).$$
(17)

Let $C_1 \doteq \frac{1}{2}C_2$, $C^{(3)}(A) \doteq C_2(4C')^{-1}$. Then, taking any number $\delta \in (0, C^{(3)}(A)]$, from (16) and (17) we derive estimate (11). If n = 4, then $b_{op}(V - \lambda) = b_{op}(V)$ for all $\lambda \in \mathbb{R}$. Therefore, from theorem 1.5, remark 3 and the polarization identity, for any $\delta > 0$ and for all sufficiently large numbers $\varkappa \ge \varkappa_0$, we get

$$\left| \int_{K} (V - \lambda) \overline{\psi} \phi \, \mathrm{d}x \right| \leq C''(\delta + b_{\mathrm{op}}(V)) \|\widehat{L}^{1/2}\psi\| \cdot \|\widehat{L}^{1/2}\phi\|, \qquad \psi, \phi \in \widetilde{H}^{1}(K).$$

Let $C_1 \doteq \frac{1}{2}C_2$, $C^{(4)}(A) \doteq C_2(4C'')^{-1}$, and let us choose any number $\delta \in (0, C^{(4)}(A)]$. Now, theorem 1.2 immediately follows from the last estimate and estimate (16).

2. Proof of theorems 1.3 and 1.4

First we introduce notation and prove some statements which will be used in the following.

Let Ω be a non-negative function from the Schwartz space $S(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} \Omega(x) dx = 1$. Denote

$$\Omega_{\beta}(x) \doteq \beta^{-n} \Omega\left(\frac{x}{\beta}\right), \qquad x \in \mathbb{R}^{n}, \quad \beta > 0;$$

$$C_{\beta,\Lambda}(\Omega) \doteq \max_{x \in \mathbb{R}^{n}} \sum_{N \in \Lambda} \Omega_{\beta}(x - N).$$

Given a function $\phi \in L^2(K)$ and a set $\mathcal{M} \subseteq \Lambda^*$, we define the function

$$\phi^{\mathcal{M}}(x) \doteq \sum_{N \in \mathcal{M}} \phi_N e^{2\pi i (N, x)}, \qquad x \in \mathbb{R}^n;$$

 $\phi^{\Lambda^*} = \phi, \phi^{\emptyset} \equiv 0$ (the notation $\phi^{\mathcal{M}}$ will be used when either a set \mathcal{M} or its complement $\Lambda^* \setminus \mathcal{M}$ is finite).

Fix a vector $\gamma \in \Lambda \setminus \{0\}$; $e = |\gamma|^{-1} \gamma$.

If n = 3, we set $\varepsilon = \delta + b_{\text{form}}(|\mathcal{W}|)$. Then, for some number $C_{\varepsilon} > 0$, estimate (7) holds. Consequently estimate (9) holds for all $k \in \mathbb{R}^3$ as well.

If n = 4, we set $\varepsilon = \delta + b_{op}(W)$. Then estimate (8) is also fulfilled for some number $C_{\varepsilon} > 0$. Consequently, for all $k \in \mathbb{R}^4$, estimate (10) is valid as well.

Let us pick a number a > 0 such that $C_{\varepsilon} \leq \varepsilon a^2$ (for both n = 3 and n = 4) and $a \geq 4\pi$ diam K^* , where diam K^* is a diameter of the fundamental domain K^* .

We assume that $\varkappa_0 > 2a$ (and $\varkappa \ge \varkappa_0$). A few additional lower bounds on the number \varkappa_0 will be given below. For the vectors $k \in \mathbb{R}^n$, we suppose that $|(k, \gamma)| = \pi$.

$$\mathcal{K} = \mathcal{K}(k; \varkappa) = \left\{ N \in \Lambda^* : G_N^- \leqslant \frac{\varkappa}{2} \right\}, \qquad \mathcal{K}_a = \mathcal{K}_a(k; \varkappa) = \{ N \in \Lambda^* : G_N^- \leqslant a \} \subseteq \mathcal{K}.$$

If $N \in \mathcal{K}$, then $|k_{\perp} + 2\pi N_{\perp}| \ge \kappa/2$. Let $\mathcal{N}(\mathcal{K}_a)$ be the number of vectors N in the set \mathcal{K}_a . Since $a \ge 4\pi$ diam K^* , we have $a + 2\pi$ diam $K^* \le 3a/2 < 3\kappa/4$ and consequently

$$\mathcal{N}(\mathcal{K}_a) \leqslant c_0 v^{-1}(K^*) a^2 \varkappa^{n-2} = c_0 v(K) a^2 \varkappa^{n-2}$$

where $c_0 = c_0(n) > 0$.

For vectors $y \in \mathbb{R}^n$ with $y_{\perp} \neq 0$, we write

$$\widetilde{e}(y) \doteq \frac{y_{\perp}}{|y_{\perp}|} \in S_{\gamma}^{n-2}.$$

Denote

$$S_{\nu}^{n-2}(\varkappa) \doteq \{ y \in \mathbb{R}^n : (y, e) = 0 \text{ and } |y_{\perp}| = \varkappa \},\$$

and choose vectors $y^{(j)} \in S_{\gamma}^{n-2}(\varkappa)$, j = 1, ..., J, such that the following two conditions are fulfilled:

(1) |y^(j₁) - y^(j₂)| ≥ *a* for different indices *j*₁ and *j*₂;
 (2) for any vector *y* ∈ Sⁿ⁻²_γ(*x*), there exists a vector y^(j) such that |*y* - y^(j)| < *a*.

For $a \leq \widetilde{a} \leq 2\varkappa$ and $y \in S_{\gamma}^{n-2}(\varkappa)$, denote by $\mathcal{N}(\widetilde{a}; y)$ the number of vectors $y^{(j)}$ satisfying the inequality $|y - y^{(j)}| \leq \tilde{a}$.

We shall use (without proof) the following simple lemma.

Lemma 2.1. There are constants $c_1 = c_1(n) > 0$ and $c_2 = c_2(n) > c_1(n)$ such that for all $\widetilde{a} \in [a, 2\varkappa]$ and all vectors $y \in S_{\gamma}^{n-2}(\varkappa)$ the estimates

$$c_1\left(\frac{\widetilde{a}}{a}\right)^{n-2} \leqslant \mathcal{N}(\widetilde{a}; y) \leqslant c_2\left(\frac{\widetilde{a}}{a}\right)^{n-2}$$

hold.

In particular, from lemma 2.1 it follows that

$$J \leqslant c_2 \left(\frac{2\varkappa}{a}\right)^{n-2}.$$
(18)

Define the sets

$$\mathcal{A}^{(j)} = \{ N \in \mathcal{K} \setminus \mathcal{K}_a : |\varkappa \widetilde{e}(k + 2\pi N) - y^{(j)}| < G_N^- \}, \qquad j = 1, \dots, J.$$

For any $N \in \mathcal{K} \setminus \mathcal{K}_a$, one has $G_N^- > a$. Therefore, by the choice of the vectors $y^{(j)} \in S_{\gamma}^{n-2}(\varkappa)$, we deduce that

$$\mathcal{K}\setminus\mathcal{K}_a = \bigcup_{j=1}^J \mathcal{A}^{(j)}.$$

If $N \in \mathcal{A}^{(j)}$, then

$$|(k+2\pi N) - y^{(j)}|^{2} = |(k_{\perp}+2\pi N_{\perp}) - y^{(j)}|^{2} + |k_{\parallel}+2\pi N_{\parallel}|^{2}$$

$$\leq 2|\varkappa \widetilde{e}(k+2\pi N) - y^{(j)}|^{2} + 2|(k_{\perp}+2\pi N_{\perp}) - \varkappa \widetilde{e}(k+2\pi N)|^{2} + |k_{\parallel}+2\pi N_{\parallel}|^{2}$$

$$< 2|\varkappa \widetilde{e}(k+2\pi N) - y^{(j)}|^{2} + 2(G_{N}^{-})^{2} < 4(G_{N}^{-})^{2}.$$
(19)

For vectors $N \in \mathcal{K} \setminus \mathcal{K}_a$ we shall use the short notation $\mathcal{N}_N \doteq \mathcal{N}(G_N^-; \varkappa \widetilde{e}(k + 2\pi N))$ for the number of indices $j \in \{1, \ldots, J\}$ such that $N \in \mathcal{A}^{(j)}$. The next estimate follows from lemma 2.1:

$$\mathcal{N}_N \geqslant c_1 \left(\frac{G_N^-}{a}\right)^{n-2}.$$
(20)

Define the functions

$$\phi^{(j)} = \sum_{N \in \mathcal{A}^{(j)}} \mathcal{N}_N^{-1} \phi_N \, \mathrm{e}^{2\pi \mathrm{i}(N,x)}, \qquad j = 1, \dots, J.$$

We have

$$\phi^{\mathcal{K}\setminus\mathcal{K}_a} = \sum_{j=1}^J \phi^{(j)}.$$

Now, let n = 3. By (19), for all $N \in \mathcal{A}^{(j)}$ we derive

$$\varepsilon |(k+2\pi N) - y^{(j)}|^2 + C_{\varepsilon} < 4\varepsilon (G_N^-)^2 + \varepsilon a^2 < 5\varepsilon (G_N^-)^2.$$

Hence, from (9) (for all j = 1, ..., J), it follows that

$$\begin{split} \int_{K} |\mathcal{W}| \cdot |\phi^{(j)}|^{2} \, \mathrm{d}x &\leq v(K) \sum_{N \in \mathcal{A}^{(j)}} (\varepsilon |(k+2\pi N) - y^{(j)}|^{2} + C_{\varepsilon}) |\phi_{N}^{(j)}|^{2} \\ &\leq 5\varepsilon v(K) \sum_{N \in \mathcal{A}^{(j)}} \mathcal{N}_{N}^{-2} (G_{N}^{-})^{2} |\phi_{N}|^{2}. \end{split}$$

The last inequality and estimates (18) and (20) imply that

$$\int_{K} |\mathcal{W}| \cdot |\phi^{\mathcal{K} \setminus \mathcal{K}_{a}}|^{2} dx \leq J \sum_{j=1}^{J} \int_{K} |\mathcal{W}| \cdot |\phi^{(j)}|^{2} dx \leq 5\varepsilon J v(K) \sum_{j=1}^{J} \sum_{N \in \mathcal{A}^{(j)}} \mathcal{N}_{N}^{-2} (G_{N}^{-})^{2} |\phi_{N}|^{2} \\
= 5\varepsilon J v(K) \sum_{N \in \mathcal{K} \setminus \mathcal{K}_{a}} \mathcal{N}_{N}^{-1} (G_{N}^{-})^{2} |\phi_{N}|^{2} \leq 10\varepsilon \frac{c_{2}}{c_{1}} \varkappa v(K) \sum_{N \in \mathcal{K} \setminus \mathcal{K}_{a}} G_{N}^{-} |\phi_{N}|^{2} \\
\leq 10\varepsilon \frac{c_{2}}{c_{1}} v(K) \sum_{N \in \mathcal{K} \setminus \mathcal{K}_{a}} G_{N}^{+} G_{N}^{-} |\phi_{N}|^{2} = 10\varepsilon \frac{c_{2}}{c_{1}} \|\widehat{L}^{1/2}(k + i\varkappa e)\phi^{\mathcal{K} \setminus \mathcal{K}_{a}}\|^{2}.$$
(21)

The function |W| is \widehat{H}_0 -form bounded. In particular, this means that $W \in L^1_{loc}(\mathbb{R}^3)$. For the functions

$$(\mathcal{W} * \Omega_{\beta})(x) = \int_{\mathbb{R}^3} \mathcal{W}(y) \Omega_{\beta}(x - y) \, \mathrm{d}y, \qquad x \in \mathbb{R}^3, \quad \beta > 0,$$

one has

$$\|\mathcal{W} * \Omega_{\beta}\|_{L^{\infty}(\mathbb{R}^{3})} \leqslant C_{\beta, \Lambda}(\Omega) \|\mathcal{W}\|_{L^{1}(K)},$$
(22)

and

$$\|\mathcal{W} - \mathcal{W} * \Omega_{\beta}\|_{L^{1}(K)} \to 0$$

as $\beta \to +0$. Let us pick a number $\beta > 0$ such that

$$\frac{|\gamma|}{\pi}c_0a^2\|\mathcal{W}-\mathcal{W}*\Omega_\beta\|_{L^1(K)}\leqslant\varepsilon.$$
(23)

We assume that the following constraint on the number \varkappa_0 is fulfilled:

$$\frac{|\gamma|}{\pi} C_{\beta,\Lambda}(\Omega) \|\mathcal{W}\|_{L^1(K)} \leqslant \varepsilon \varkappa_0.$$
⁽²⁴⁾

Since

$$\begin{split} \|\phi^{\mathcal{K}_{a}}\|^{2} &\leq \frac{|\gamma|}{2\pi} \varkappa^{-1} \|\widehat{L}^{1/2}(k+i\varkappa e)\phi^{\mathcal{K}_{a}}\|^{2}, \\ \|\phi^{\mathcal{K}_{a}}\|_{L^{\infty}(\mathbb{R}^{3})}^{2} &\leq \mathcal{N}(\mathcal{K}_{a}) \sum_{N \in \mathcal{K}_{a}} |\phi_{N}|^{2} \\ &\leq \frac{|\gamma|}{2\pi} c_{0}a^{2}v(K) \sum_{N \in \mathcal{K}_{a}} G_{N}^{+}G_{N}^{-} |\phi_{N}|^{2} = \frac{|\gamma|}{2\pi} c_{0}a^{2} \|\widehat{L}^{1/2}(k+i\varkappa e)\phi^{\mathcal{K}_{a}}\|^{2}, \end{split}$$

using (22), (23) and (24), (for $\varkappa \ge \varkappa_0$) we obtain

$$\int_{K} |\mathcal{W}| \cdot |\phi^{\mathcal{K}_{a}}|^{2} dx \leq \|\mathcal{W} - \mathcal{W} * \Omega_{\beta}\|_{L^{1}(K)} \|\phi^{\mathcal{K}_{a}}\|_{L^{\infty}(\mathbb{R}^{3})}^{2} + \|\mathcal{W} * \Omega_{\beta}\|_{L^{\infty}(\mathbb{R}^{3})} \|\phi^{\mathcal{K}_{a}}\|^{2} \leq \varepsilon \|\widehat{L}^{1/2}(k + i\varkappa e)\phi^{\mathcal{K}_{a}}\|^{2}.$$
(25)

If $N \in \Lambda^* \setminus \mathcal{K}$, then $G_N^- > \frac{1}{3}|k + 2\pi N|$ and consequently

$$G_N^+ G_N^- > \frac{1}{3} |k + 2\pi N|^2.$$
⁽²⁶⁾

11

Suppose that the next constraint on the number \varkappa_0 is also true:

$$\frac{|\gamma|}{\pi}C_{\varepsilon} \leqslant 2\varepsilon\varkappa_{0}.$$
(27)

Then (for $\varkappa \ge \varkappa_0$)

$$\int_{K} |\mathcal{W}| \cdot |\phi^{\Lambda^{*} \setminus \mathcal{K}}|^{2} dx \leq v(K) \sum_{N \in \Lambda^{*} \setminus \mathcal{K}} (\varepsilon |k + 2\pi N|^{2} + C_{\varepsilon}) |\phi_{N}|^{2}$$
$$\leq 4\varepsilon v(K) \sum_{N \in \Lambda^{*} \setminus \mathcal{K}} G_{N}^{+} G_{N}^{-} |\phi_{N}|^{2} = 4\varepsilon ||\widehat{L}^{1/2}(k + i\varkappa e)\phi^{\Lambda^{*} \setminus \mathcal{K}}||^{2}.$$
(28)

Since $\varepsilon = \delta + b_{\text{form}} (|\mathcal{W}|)$ and

$$\phi = \phi^{\mathcal{K}_a} + \phi^{\mathcal{K} \setminus \mathcal{K}_a} + \phi^{\Lambda^* \setminus \mathcal{K}}, \qquad \phi \in \widetilde{H}^1(K),$$

inequality (12) follows from (21), (25) and (28). This completes the proof of theorem 1.3.

Now, let n = 4. Using the inequality $C_{\varepsilon} \leq \varepsilon a^2$, from (19) for all $N \in \mathcal{A}^{(j)}$, j = 1, ..., J, we obtain

$$\varepsilon^{2} |(k+2\pi N) - y^{(j)}|^{4} + C_{\varepsilon}^{2} < 16\varepsilon^{2} (G_{N}^{-})^{4} + \varepsilon^{2} a^{4} < 17\varepsilon^{2} (G_{N}^{-})^{4}.$$

Hence, by (10),

$$\int_{K} |\mathcal{W}|^{2} |\phi^{(j)}|^{2} dx \leq v(K) \sum_{N \in \mathcal{A}^{(j)}} (\varepsilon^{2} |(k+2\pi N) - y^{(j)}|^{4} + C_{\varepsilon}^{2}) |\phi_{N}^{(j)}|^{2}$$
$$\leq 17 \varepsilon^{2} v(K) \sum_{N \in \mathcal{A}^{(j)}} \mathcal{N}_{N}^{-2} (G_{N}^{-})^{4} |\phi_{N}|^{2}.$$

By analogy with (21) (also see (18) and (20)), we get

$$\int_{K} |\mathcal{W}|^{2} |\phi^{\mathcal{K} \setminus \mathcal{K}_{a}}|^{2} dx \leq J \sum_{j=1}^{J} \int_{K} |\mathcal{W}|^{2} |\phi^{(j)}|^{2} dx$$

$$\leq 17 \varepsilon^{2} J v(K) \sum_{j=1}^{J} \sum_{N \in \mathcal{A}^{(j)}} \mathcal{N}_{N}^{-2} (G_{N}^{-})^{4} |\phi_{N}|^{2} = 17 \varepsilon^{2} J v(K) \sum_{N \in \mathcal{K} \setminus \mathcal{K}_{a}} \mathcal{N}_{N}^{-1} (G_{N}^{-})^{4} |\phi_{N}|^{2}$$

$$\leq 68 \varepsilon^{2} \frac{c_{2}}{c_{1}} \varkappa^{2} v(K) \sum_{N \in \mathcal{K} \setminus \mathcal{K}_{a}} (G_{N}^{-})^{2} |\phi_{N}|^{2} \leq 68 \varepsilon^{2} \frac{c_{2}}{c_{1}} v(K) \sum_{N \in \mathcal{K} \setminus \mathcal{K}_{a}} (G_{N}^{+} G_{N}^{-})^{2} |\phi_{N}|^{2}$$

$$= 68 \varepsilon^{2} \frac{c_{2}}{c_{1}} \|\widehat{L}(k + i\varkappa e) \phi^{\mathcal{K} \setminus \mathcal{K}_{a}}\|^{2}.$$
(29)

Since the function \mathcal{W} is bounded with respect to the operator \widehat{H}_0 , we have $\mathcal{W} \in L^2_{loc}(\mathbb{R}^4) \subset L^1_{loc}(\mathbb{R}^4)$. As above (see (22)), for the functions $\mathcal{W} * \Omega_\beta$, $\beta > 0$, we derive the inequality

$$\|\mathcal{W} * \Omega_{\beta}\|_{L^{\infty}(\mathbb{R}^{4})} \leqslant C_{\beta, \Lambda}(\Omega) \|\mathcal{W}\|_{L^{1}(K)}.$$
(30)

Moreover,

$$\|\mathcal{W} - \mathcal{W} * \Omega_{\beta}\|_{L^{2}(K)} \to 0$$

as $\beta \to +0$. Let us pick a number $\beta > 0$ such that

$$\frac{|\gamma|^2}{\pi^2} c_0 a^2 \|\mathcal{W} - \mathcal{W} * \Omega_\beta\|_{L^2(K)}^2 \leqslant \varepsilon^2.$$
(31)

The number \varkappa_0 is supposed to satisfy inequality (24). The following estimates are valid:

$$\begin{split} \|\phi^{\mathcal{K}_{a}}\| &\leq \frac{|\gamma|}{2\pi} \varkappa^{-1} \|\widehat{L}(k+\mathrm{i}\varkappa e)\phi^{\mathcal{K}_{a}}\|, \\ \|\phi^{\mathcal{K}_{a}}\|_{L^{\infty}(\mathbb{R}^{4})}^{2} &\leq \mathcal{N}(\mathcal{K}_{a}) \sum_{N \in \mathcal{K}_{a}} |\phi_{N}|^{2} \\ &\leq \left(\frac{|\gamma|}{2\pi}\right)^{2} c_{0}a^{2}v(K) \sum_{N \in \mathcal{K}_{a}} \left(G_{N}^{+}G_{N}^{-}\right)^{2} |\phi_{N}|^{2} = \left(\frac{|\gamma|}{2\pi}\right)^{2} c_{0}a^{2} \|\widehat{L}(k+\mathrm{i}\varkappa e)\phi^{\mathcal{K}_{a}}\|^{2}. \end{split}$$

Therefore, using (24), (30) and (31), for $\varkappa \ge \varkappa_0$, we obtain

$$\int_{K} |\mathcal{W}|^{2} |\phi^{\mathcal{K}_{a}}|^{2} dx \leq 2 \|\mathcal{W} - \mathcal{W} * \Omega_{\beta}\|_{L^{2}(K)}^{2} \|\phi^{\mathcal{K}_{a}}\|_{L^{\infty}(\mathbb{R}^{4})}^{2} + 2 \|\mathcal{W} * \Omega_{\beta}\|_{L^{\infty}(\mathbb{R}^{4})}^{2} \|\phi^{\mathcal{K}_{a}}\|^{2} \leq \varepsilon^{2} \|\widehat{L}(k + i\varkappa e)\phi^{\mathcal{K}_{a}}\|^{2}.$$

$$(32)$$

Finally suppose that the number \varkappa_0 also satisfies inequality (27). Then estimates (10) and (26) yield

$$\int_{K} |\mathcal{W}|^{2} |\phi^{\Lambda^{*} \setminus \mathcal{K}}|^{2} dx \leq v(K) \sum_{N \in \Lambda^{*} \setminus \mathcal{K}} \left(\varepsilon^{2} |k + 2\pi N|^{4} + C_{\varepsilon}^{2}\right) |\phi_{N}|^{2}$$

$$\leq 10\varepsilon^{2} v(K) \sum_{N \in \Lambda^{*} \setminus \mathcal{K}} \left(G_{N}^{+} G_{N}^{-}\right)^{2} |\phi_{N}|^{2} = 10\varepsilon^{2} \|\widehat{L}(k + i\varkappa e)\phi^{\Lambda^{*} \setminus \mathcal{K}}\|^{2}.$$
(33)

Since $\varepsilon = \delta + b_{op} (|\mathcal{W}|)$ and

$$\phi = \phi^{\mathcal{K}_a} + \phi^{\mathcal{K} \setminus \mathcal{K}_a} + \phi^{\Lambda^* \setminus \mathcal{K}}, \qquad \phi \in \widetilde{H}^2(K),$$

theorem 1.4 immediately follows from (29), (32) and (33).

References

- [1] Ashcroft N W and Mermin N D 1976 Solid State Physics (New York: Holt, Rinehart and Winston)
- [2] Reed M and Simon B 1978 Methods of Modern Mathematical Physics IV: Analysis of Operators (New York: Academic)
- [3] Kuchment P 1993 Floquet Theory for Partial Differential Equations (Operator Theory: Advances and Applications vol 60) (Basel: Birkhäuser)
- [4] Thomas L E 1973 Commun. Math. Phys. 33 335-43
- [5] Birman M Sh and Suslina T A 2000 *St Petersburg Math. J.* **11** 203–32
- [6] Kuchment P and Levendorskiĭ S 2002 Trans. Am. Math. Soc. 354 537-69
- [7] Reed M and Simon B 1975 Methods of Modern Mathematical Physics: II. Fourier Analysis. Self-Adjointness (New York: Academic)
- [8] Danilov L I 2009 J. Phys. A: Math. Theor. 42 275204
- [9] Danilov L I 2000 Theor. Math. Phys. 124 859-71
- [10] Danilov L I 2000 On absolute continuity of the spectrum of periodic Schrödinger and Dirac operators. I Manuscript dep. at VINITI 15.06.00, no 1683-B00 (Izhevsk: Fiz.-Tekhn. Inst. Ural. Otdel. Ross. Akad. Nauk)
- [11] Shterenberg R G 2005 J. Math. Sci. 129 4087-109
- [12] Danilov L I 2004 On the absence of eigenvalues in the spectrum of two-dimensional periodic Dirac and Schrödinger operators Izv. Inst. Mat. i Inform. Udmurt. Univ. 1 49–84 (in Russian)
- [13] Morame A 1998 J. Phys. A: Math. Gen. 31 7593-601
- [14] Shterenberg R G 2002 St Petersburg Math. J. 13 659-83
- [15] Shterenberg R G 2003 Proc. St Petersburg Math. Soc. vol IX pp 191–221 (Am. Math. Soc. Transl. Series 2 vol 209) (Providence, RI: American Mathematical Society)
- [16] Danilov L I 2003 Theor. Math. Phys. 134 392-403
- [17] Sobolev A V 1999 Invent. Math. 137 85-112
- [18] Suslina T A and Shterenberg R G 2002 St Petersburg Math. J. 13 859-91

- [19] Danilov L I 2003 Math. Notes 73 46–57
- [20] Shen Z 2001 Int. Math. Res. Not. 1 1–31
- [21] Shen Z 2001 Illinois J. Math. 45 873–93
- [22] Shen Z 2002 J. Funct. Anal. 193 314–45
- [23] Tikhomirov M and Filonov N 2005 St Petersburg Math. J. 16 583-9
- [24] Shen Z 2001 Contemp. Math. 277 113-26
- [25] Shen Z and Zhao P 2008 Trans. Am. Math. Soc. 360 1741–58
- [26] Friedlander L 2002 Commun. Math. Phys. 229 49-55
- [27] Danilov L I 2008 Bull. Udmurt Univ. Mathematics. Mechanics. Computer Science no 1 61–96 (http://vestnik.udsu.ru)
- [28] Danilov L I 2008 On absolute continuity of the spectrum of a d-dimensional periodic magnetic Dirac operator arXiv:0805.0399 [math-ph]
- [29] Kato T 1976 Perturbation Theory for Linear Operators (Berlin: Springer)